A STUDY ON THE
CHAIN RATIO-TYPE ESTIMATOR

Cem Kadilar* and Hülya Çöngü*

Received 17.03.2003 : Accepted 16.12.2003

Abstract

We examine the chain ratio-type estimator and obtain its MSE equation. We prove that the chain ratio-type estimator is more efficient than the traditional ratio estimator under certain conditions. In addition, this proof is supported by an application with original data.

Keywords: Chain ratio-type estimator, Sampling, Efficiency.

1. Introduction

The classical ratio estimator for the population mean \bar{Y} of the variate of interest y is defined by

$$\bar{y}_r = \frac{\bar{y}}{\bar{x}},$$

where it is assumed that the population mean \bar{X} of the auxiliary variate x is known. Here

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \text{and} \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

where n is the number of units in the sample [1].

The MSE of the classical ratio estimator is

$$\text{MSE}(\bar{y}_r) \cong \frac{1}{n} \left(R^2 S_x^2 - 2R\rho S_x S_y + S_y^2 \right),$$

where $f = \frac{n}{N}$; N is the number of units in the population; $R = \frac{\sum X}{n}$ is the population ratio; S_x^2 is the population variance of the auxiliary variate and S_y^2 is the population variance of the variate of interest [2].

*Hacettepe University, Faculty of Science, Department of Statistics, 06532 Beytepe, Ankara, Turkey. E-mail: kadilar@hacettepe.edu.tr and hcingi@hacettepe.edu.tr